<samp id="oljzy"><option id="oljzy"></option></samp>
  • <code id="oljzy"><cite id="oljzy"><u id="oljzy"></u></cite></code>
  • <code id="oljzy"></code>
    <var id="oljzy"></var>
  • <var id="oljzy"><label id="oljzy"><tr id="oljzy"></tr></label></var>
  • <output id="oljzy"><rt id="oljzy"></rt></output>
    <var id="oljzy"><rt id="oljzy"></rt></var>

  • <code id="oljzy"><label id="oljzy"></label></code>
  • <table id="oljzy"></table>

  •  腦功能基因組學教育部重點實驗室
    Key Laboratory of Brain Functional Genomics, Ministry of Education

    您的位置: 首頁  開放交流  學術講座

    "visualizing AMPA receptor synaptic plasticity in vivo"張勇 博士(Johns Hopkins University School of Medicine)-2015.12.30

    發布日期: 2016-08-30  瀏覽次數: 182  作者:

    "visualizing AMPA receptor synaptic plasticity in vivo"張勇 博士(Johns Hopkins University  School of Medicine)-2015.12.30

    時間:2015年12月30日 13:00

    地點:中北校區 腦功能基因組學研究所一樓會議室

    報告題目:visualizing AMPA receptor synaptic plasticity in vivo

    報告人:張勇 博士 Johns Hopkins University  School of Medicine

    主持人:林龍年 教授

     

    報告人簡介: Yong Zhang Ph.D, Department of Neuroscience, Johns Hopkins University School of Medicine. Yong Zhang obtained Ph.D. degree in Biochemistry from Johns Hopkins University School of Medicine in 2008. Since 2008, he started his postdoctoral training in Dr. Richard Huganir's lab in Johns Hopkins University with research of visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. His research work  was published on Nature Neuroscience and featured by Nature Neuroscience, Hopkins Medicine news release and Chemical and Engineering News.

     

    報告簡介:Regulation of AMPA receptor (AMPAR) membrane trafficking is critical for synaptic plasticity, as well as for learning and memory. However, the mechanisms of AMPAR trafficking in vivo remain elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stimulation led to a significant increase in the intensity of surface AMPAR GluA1 subunit (sGluA1) in both spines and dendritic shafts and a small increase in spine size relative to prestimulation values. Interestingly, the initial spine properties biased spine changes following whisker stimulation. Changes in spine sGluA1 intensity were positively correlated with changes in spine size and dendritic shaft sGluA1 intensity following whisker stimulation. The increase in spine sGluA1 intensity evoked by whisker stimulation was NMDA receptor dependent and long lasting, similar to major forms of synaptic plasticity in the brain. In this study we were able to observe experience-dependent AMPAR trafficking in real time and characterize, in vivo, a major form of synaptic plasticity in the brain.

    (若分享按鈕出現問題,請先登錄校園網關)
    <samp id="oljzy"><option id="oljzy"></option></samp>
  • <code id="oljzy"><cite id="oljzy"><u id="oljzy"></u></cite></code>
  • <code id="oljzy"></code>
    <var id="oljzy"></var>
  • <var id="oljzy"><label id="oljzy"><tr id="oljzy"></tr></label></var>
  • <output id="oljzy"><rt id="oljzy"></rt></output>
    <var id="oljzy"><rt id="oljzy"></rt></var>

  • <code id="oljzy"><label id="oljzy"></label></code>
  • <table id="oljzy"></table>

  • 全程不盖被子打扑克视频大全